

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/EXT-12-26956

MarmotViz User Guide

Alexander Rattner
Donna Post Guillen
Srinivas Garimella
Alark Joshi

August 2012

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

 ii

INL/EXT-12-26956

MarmotViz User Guide

Alexander Rattner
Donna Post Guillen
Srinivas Garimella

Alark Joshi

August 2012

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Through the INL LDRD Program
Under DOE Idaho Operations Office

Contracts: DE-FG02-97ER25308 and DE-AC07-06ID14517

 iii

This page intentionally left blank.

 iv

ABSTRACT

MarmotViz is an illustrative visualization plug-in for ParaView. It is intended for generating

enhanced visualizations of time-varying datasets on unstructured connected meshes. A detailed
description of the implemented algorithms and program structure can be found in the related
document: Generalized framework and algorithms for illustrative visualization of time-varying
data on unstructured meshes*. This document provides details for compiling/building
MarmotViz, using the MarmotViz plug-in in ParaView, and extending the MarmotViz plug-in.

* Rattner, A.S. Guillen, D.P. Garimella, S. Joshi, A. Generalized framework and algorithms for illustrative visualization of time

varying data on unstructured meshes. Idaho National Laboratory Report INL/EXT-12-26809, July 2012.

 v

CONTENTS

1. Overview ... 1

2. Compiling and building MarmotViz ... 1

3. Using MarmotViz on workstation environments .. 1
3.1 Loading the MarmotViz plug-in ... 1
3.2 Applying the MarmotViz filter to data .. 1
3.3 Using the MarmotViz filter ... 2
3.4 Common tasks in MarmotViz ... 3

3.4.1 Using the gradient-based ROI identification algorithm ... 3
3.4.2 Using the adaptive-volume feature matching algorithm .. 4
3.4.3 Selective feature visualization ... 4
3.4.4 Feature smoothing illustrative effect ... 4
3.4.5 Tube outline illustrative effect ... 5
3.4.6 Feature halo illustrative effect ... 6
3.4.7 Speedlines illustrative effect .. 6
3.4.8 Strobe silhouettes illustrative effect ... 7

4. Using MarmotViz in client/server environments .. 8
4.1 Loading the MarmotVizCAVE plug-in ... 8
4.2 Using the MarmotVizCAVE filter .. 9

5. Extending the MarmotViz functionality .. 9
5.1 Developing new ROI identification algorithms .. 10
5.2 Developing new feature matching algorithms .. 10
5.3 Developing new illustrative visualization effects ... 11

 1

MarmotViz User Guide
1. Overview

MarmotViz is an illustrative visualization plug-in for ParaView. It enables users to identify
and track time-varying features in simulation datasets. It permits the application of illustrative
visualization effects to these features including: selective visualization, feature coloring,
boundary smoothing, haloing, silhouette outlining, speedlines, and strobe silhouettes. These
techniques serve to assist in exploration and interpretation of simulation data and can be used to
generate enhanced renderings for presentations. The MarmotViz plug-in is developed as a
flexible framework, and can be easily extended to incorporate new region-of-interest (ROI)
identification algorithms, feature matching and tracking algorithms, and illustrative visualization
effects.

2. Compiling and building MarmotViz
The distributed MarmotViz source code contains a top-level directory named

MarmotVizAll. This directory contains versions of the MarmotViz plug-in for use on
workstations with ParaView (MarmotViz) and in client/server environments, i.e.
ParaView/pvserver (MarmotVizCAVE). MarmotViz was developed for use on GNU/Linux
environments, and has not been fully tested on Windows or OS X systems.

Before building the MarmotViz plug-ins, ensure that you are operating in an environment
with ParaView 3.14.1 installed, and the correct software and environment variables for building
ParaView. If ParaView 3.14.1 can be built from source code on your working environment then
the MarmotViz plug-in can also be built. The ParaView source code can be found on:
http://paraview.org/paraview/resources/software.php, and compilation and building instructions
can be found on http://paraview.org/Wiki/ParaView:Build_And_Install.

Once ParaView 3.14.1 has been installed, MarmotViz can be built. To build the workstation
plug-in, run the MarmotVizAll/MarmotViz/makePlugin.sh script. To build the
client/server plug-in, run the MarmotVizAll/MarmotVizCAVE/makePlugin.sh script.

3. Using MarmotViz on workstation environments
3.1 Loading the MarmotViz plug-in

To load MarmotViz in the workstation environment, open the Tools � Manage Plugins
menu in ParaView. Select Load New and select the libMarmotViz.so library file that was
built in the MarmotVizAll directory. Users can enable the Auto Load option to automatically
load MarmotViz during ParaView startup. Introductory guides to the usage of ParaView can be
found on: http://paraview.org/paraview/resources/webinars.html.

3.2 Applying the MarmotViz filter to data
Once data has been loaded into ParaView pipeline, the MarmotViz filter can be applied to

generate illustrative visualizations. Source data should be defined on a connected mesh (i.e. not
on point clouds) made of 3D cells. Data fields should be defined on cells – point data fields are
ignored by the MarmotViz filter. To apply the filter to a data source, select the data in the
Pipeline Browser, and then select the MarmotViz filter in the Filters menu. If the filter has not
been used recently, it may be necessary to search for it by name (Filters�Search).

 2

3.3 Using the MarmotViz filter
The MarmotViz filter proceeds through three stages: region-of-interest (ROI) identification,

feature matching, and application of illustrative visualization effects. Once the MarmotViz filter
is applied to a dataset, users are presented with the interactive GUI (Fig. 1), which is used to
control the filter through these stages. Descriptions of the functionality and use of the GUI
elements are provided below.

• Toggle Update Filter – Toggling this checkbox informs the filter to update when Apply is
pressed. This is typically used to regenerate illustrative effects when the view is changed.

• Select Input Array – This drop-down menu allows the user to select the input cell scalar
field that will be used to identify ROIs in the input data.

Figure 1 – MarmotViz filter GUI

 3

• Select Input Velocity – This drop-down menu allows the user to select the vector field that
will be used for velocity data during feature matching. If no vector field is available, feature
matching will proceed without using velocity data.

• ROI-ID Algorithm – This drop-down menu allows the user to select the ROI identification
algorithm that will be used. Currently, only the Gradient algorithm is available.

• ROI-ID Parameters – This text field is used to input comma-separated parameters for the
ROI-ID algorithm.

• Status of ROI-ID Alg. – This textbox displays results from changing the ROI-ID
parameters.

• Feature Matching Alg. – This drop-down menu allows the user to select the algorithm used
for feature matching. Currently, only the Adaptive Volume algorithm is available.

• Matching Alg. Parameters – This text field is used to input comma-separated parameters
for the feature matching algorithm.

• Status of Feature Matching Alg. – This textbox displays results from changing the feature-
matching algorithm parameters.

• Number of Features – This textbox displays the number of identified features in the dataset.
• Feature Status – This listbox lists the identified features. Checkboxes are provided next to

each feature, and unchecked features are removed from the output dataset.
• Feature FXStatus – This listbox lists defined feature effects. Users can toggle the

checkboxes next to each effect to enable/disable the display of effects.
• New/Change/Delete FX Command – This text field is used to input commands to define

new illustrative effects, modify existing effects, and delete effects.
o To define a new command, provide an input string like: new,(feature number),(effect

name),(comma separated effect parameters)
o To change an existing effect, provide an input string like: change,(effect

number),(comma separated effect parameters)
o To delete an illustrative effect, provide an input string like: delete,(effect number)

• Status of FX Command – This textbox displays the result of the most recently applied FX
command.

3.4 Common tasks in MarmotViz
Processes and guides for some common tasks in MarmotViz are described below.

3.4.1 Using the gradient-based ROI identification algorithm
The Gradient ROI identification algorithm finds contiguous regions in input meshes

separated by regions of high gradient magnitude in the input scalar field. High gradient
magnitude cells are skipped are removed from the output dataset. Additionally, the algorithm can
be given a lower threshold for region cell count. Contiguous regions with fewer cells than this
threshold are also removed from the output dataset.

To set the parameters for this algorithm provide input to the ROI-ID Parameters box as:
(boundary gradient magnitude),(minimum region cell limit)

For example, the input:
4.5,8

sets the boundary gradient limit to 4.5, and minimum number of cells per region to 8.

 4

3.4.2 Using the adaptive-volume feature matching algorithm
Feature matching algorithms are used to match identified regions at new time-steps with

known features at previously evaluated time-steps. The Adaptive Volume feature-matching
algorithm attempts to match ROIs with nearby features of similar volume using a matching
criterion that relaxes over multiple passes. If velocity data is provided (in the Select input
velocity menu), this algorithm can use this information to better track moving features. Feature
matching and tracking is performed automatically as the user steps through time in ParaView.
Identified features are added to the Feature Status list box, and feature cells are marked with the
feature ID number in the output RegionColors field.

To set the parameters for this algorithm, provide input to the Matching Alg. Parameters box
as: (initial similarity criterion),(relaxation parameter),(relaxation limit)

For example, the input:
0.7,0.8,0.3

sets the initial volume similarity matching criterion to 0.7, relaxes this criterion by 0.8 at each
matching pass, and terminates matching if the matching criterion falls below 0.3. Unmatched
ROIs become new features.

3.4.3 Selective feature visualization
Once the MarmotViz filter has been applied, features can be selectively visualized – allowing

display of interior features or removal of blocking features. Boundary regions and any unchecked
feature in the Feature Status listbox are automatically removed from the output dataset.

3.4.4 Feature smoothing illustrative effect
Once features have been identified in the MarmotViz filter, various illustrative effects can be

applied. The feature-smoothing effect generates a smoothed bounding surface around features.
Users can specify the number of smoothing passes (up to 3) applied by a built-in VTK
subdivision filter (0 passes just applies boundary Delaunay triangulation).

To apply the smoothing effect to a feature, provide input to the New/Change/Delete FX
Command box as:

new,(feature number),smoothboundary,(number of smoothing passes)

For example, the input:
new,10,smoothboundary,1

would apply a new smoothing filter to feature 10 with 1 subdivision smoothing pass.

If the newly created effect were assigned number 3 in the Feature FXStatus box, supplying
the input:

change,3,2

would increase the number of smoothing passes to 2.

Similarly, supplying the input:
delete,3

would delete this effect (3).

 5

A demonstration of the feature-smoothing effect with 0, 1, and 2 smoothing passes is
presented in Fig. 2.

3.4.5 Tube outline illustrative effect
The tube outline illustrative effect generates a tube contour around the boundary of an

identified feature. This effect can be used to emphasize a particular feature, or clarify its
boundaries.

To apply a tube outline to a specific feature, provide input to the New/Change/Delete FX
Command box as:

New,(feature number),tubeoutline,(tube thickness),(tube intensity),(number of tube
sides),(contour smoothing value)

 For example, the input:
new,2,tubeoutline,0.002,5,10,0.2

would generate a tube outline around feature 2 with thickness 0.002, value 5 in the RegionColors
field, 10 sides around each tube segment, and smooth the boundary contour to a factor of 0.2.
This last parameter must range from >0 (fully smoothed) to 1 (relatively coarse outline).

Note that the generated tube is view dependent. If the camera position or view direction is
changed, the tube outline can be regenerated by toggling the Toggle Update Filter checkbox, and
pressing Apply.

A demonstration of the tube outline effect is presented in Fig. 3. The regeneration process for
different camera angles is demonstrated in Figure 4

3.4.6 Feature halo illustrative effect
The feature halo effect generates a ribbon-like halo around the boundary of a feature. This

can be used to emphasize features of interest and provide additional visual cues about the relative
depths of features.

To apply the halo effect to a particular feature, provide input to the New/Change/Delete FX
Command box as:

new,(feature number),halo,(offset thickness),(inset thickness),(halo intensity),(smoothing factor)

For example, the input:

Figure 2 – Demonstration of smoothing illustrative effect. a. Original unsmoothed feature, b.
Smoothed feature (triangulated, 0 smoothing passes), c. Feature with 2 smoothing passes

 6

new,5,halo,0.002,0.0005,8,0.2

would generate a halo around feature 5 with offset thickness 0.002, inset thickness 0.0005,
intensity 8 in the RegionColors field, and contour smoothing factor of 0.2. As with the tube
outline effect, the halo can be regenerated for a new camera view by toggling the Toggle Update
Filter checkbox.

 A demonstration of the feature halo effect is presented in Fig. 5.

3.4.7 Speedlines illustrative effect
The speedlines illustrative effect generates cones on the trailing edge of a moving feature to

indicate its dynamic behavior. This effect requires that a velocity field be provided in the Select
Input Velocity drop-down menu.

To apply the speedlines effect to a particular feature, provide input to the New/Change/Delete
FX Command box as:

Figure 3 – Demonstration of tube outline illustrative effect to clarify the borders of a feature
that blends in with background features. a. Original visualization, b. With tube outline
enhancement

Figure 4 – When the view orientation changes, generated illustrative effects may no longer
appear valid (a) and need to be regenerated (b)

 7

new,(feature number),speedlines,(speedlines intensity),(number of speedlines),(cone base
radius),(time change for cone length),(number of facets per cone)

For example, the input:
new,4,speedlines,8,6,0.001,0.005,12

would generate 6 speedlines along the trailing edge of feature 4, with intensity 8 in the
RegionColors field, cone base radii of 0.001, axial length of 0.005×velocity, and 12 facets per
cone. As before, the speedlines can be regenerated for a new camera view by toggling the Toggle
Update Filter checkbox.

 A demonstration of the speedlines effect is presented in Fig. 6.

3.4.8 Strobe silhouettes illustrative effect
The strobe silhouettes illustrative effect generates multiple tube curves offset from the

Figure 5 – Demonstration of the feature halo illustrative effect. In cases where relative
positions of features may be unclear (a), feature halos can provide additional depth cues (b)

Figure 6 – Demonstration of the speedlines illustrative effect

 8

trailing edge of a feature. As in the speedlines effect, this can be used to indicate the motion of a
feature. This effect also requires that a velocity field be provided in the Select Input Velocity
drop-down menu.

To apply the strobe silhouette effect to a particular feature, provide input to the
New/Change/Delete FX Command box as:

new,(feature number),strobesilhouette,(initial strobe thickness),(strobe intensity),(number of
facets per tube segment),(number of offset strobes),(time change for strobe positions),(relative

reduction between strobes),(smoothing factor for strobes)

For example, the input:
new,0,strobesilhouette,0.002,6,12,3,0.001,0.75,0.1

would generate strobe silhouettes for feature 0, with a thickness of 0.002 on the first strobe,
intensity 6 in the RegionColors field, 12 sides per tube segment, 3 strobes offset from the feature,
spacing between strobes equal to 0.001×velocity, each strobe reduced by 25% (1-0.75) in length
and diameter relative to the preceding strobe, and the strobe contours smoothed to a factor of 0.1.
As before, the strobe silhouettes can be regenerated for a new camera view by toggling the
Toggle Update Filter checkbox.

A demonstration of the strobe silhouettes effect is presented in Fig. 7.

4. Using MarmotViz in client/server environments
4.1 Loading the MarmotVizCAVE plug-in

First, launch ParaView and connect to a server session (pvserver). Ensure that the
MarmotVizCAVE plugin is loaded in the Tools � Plugin Manager menu on both the client and
server sides. Introductory material on the usage of ParaView in client/server environments can be
found here: http://paraview.org/Wiki/Setting_up_a_ParaView_Server and here:
http://www.visualization.hpc.mil/wiki/Paraview_Client-Server_Mode.

Figure 7 – Demonstration of the strobe silhouettes illustrative effect

 9

4.2 Using the MarmotVizCAVE filter
Usage of the MarmotVizCAVE filter is similar to that of the workstation MarmotViz filter.

The primary difference is that the MarmotVizCAVE filter cannot automatically acquire camera
orientation data. The filter GUI panel is extended (Fig. 8) to allow the user to supply the camera
orientation information to the filter (in the Normal fields) for generation of illustrative effects.
The Camera Normal button automatically populates the Normal fields with the current camera
view information. The Origin field has no effect on the filter behavior, and the Show Plane check
box can be toggled to show or hide the camera projection plane with no effect on the
MarmotVizCAVE filter. Note that the filter must be triggered to update illustrative effects for a
new camera orientation (i.e. by toggling the Toggle Update Filter checkbox).

5. Extending the MarmotViz functionality
The MarmotViz and MarmotVizCAVE filters are intended to be generalized and extensible

frameworks for illustrative visualization. As, such it is relatively simple to develop new ROI

Figure 8 – MarmotVizCAVE filter GUI

 10

identification algorithms, feature matching algorithms, and illustrative effects and incorporate
them into these filters.

5.1 Developing new ROI identification algorithms
In the MarmotViz framework, ROI identification algorithms are called once for each visited

simulation time-step. New ROI identification algorithms should extend the asrROIID_Base class
found in the SharedCode directory. The derived class should implement:

• Constructor – call the parent class constructor and set default values for algorithm
parameters.

• const char * GetName() – This returns the name of the algorithm.

• void SetParameters (vector< std::string > &Parameters,
std::string &ChangeROIIDStatus) – This sets parameters for the algorithm given
a vector of input strings, and returns a result string

• vector<asrFeatureInstant*>* FindROIs(vtkDataSet *DataSet,
double Time) – This algorithm receives an input dataset and the time value, and returns a
pointer to a vector of pointers to identified ROIs (asrFeatureInstant objects).

Once the ROI identification algorithm class has been implemented, it must be incorporated
into the following places in the source code:

1. Add an option for the new ROI identification algorithm in the ROIIDAlgorithm
dropdown menu in the MarmotViz/MarmotViz.xml and
MarmotVizCAVE/MarmotVizCAVE.xml files.

2. Add an include statement for the new ROI identification algorithm header file in the tops of
MarmotViz/vtkMarmotViz.cxx and
MarmotVizCAVE/vtkMarmotVizCAVE.cxx files.

3. Add a construction option in the SetROIIDAlg(const int AlgID) function in the
MarmotViz/vtkMarmotViz.cxx and
MarmotVizCAVE/vtkMarmotVizCAVE.cxx files. You may also want to prepend field
names to the command string as is done for the Gradient algorithm in this function.

4. Add the new .cxx file name to the OTHER_SRC variables in the CMakeLists.txt files in
the MarmotViz and MarmotVizCAVE directories.

The MarmotViz and MarmotVizCAVE filters can now be rebuilt with the new ROI
identification algorithm following the steps from Section 2.

5.2 Developing new feature matching algorithms
To develop a new feature-matching algorithm, extend the asrMatch_Base class found in

the SharedCode directory. The derived class should implement the following functions:

• Constructor – call the parent class constructor and set default values for algorithm
parameters.

• const char * GetName() – This returns the name of the algorithm.

 11

• void SetParameters (vector< std::string > &Parameters,
std::string &ChangeMatchingStatus) – This sets parameters for the algorithm
given a vector of input strings, and returns a result string

• void MatchFeatures (vector<asrFeatureInstant*>
&FeatureInstants, double Time) – This algorithm receives a vector of pointers to
new ROIs at a supplied time, and matches them to the internal vector of features in the
object.

Once the feature-matching algorithm class has been implemented, it must be incorporated
into the following places in the source code:

1. Add an option for the new feature-matching algorithm in the MatchingAlgorithm
dropdown menu in the MarmotViz/MarmotViz.xml and
MarmotVizCAVE/MarmotVizCAVE.xml files.

2. Add an include statement for the new feature-matching algorithm header file in the tops of
MarmotViz/vtkMarmotViz.cxx and
MarmotVizCAVE/vtkMarmotVizCAVE.cxx files.

3. Add a construction option in the SetMatchingAlg(const int AlgID) function in
the MarmotViz/vtkMarmotViz.cxx and
MarmotVizCAVE/vtkMarmotVizCAVE.cxx files.

4. Add the new .cxx file name to the OTHER_SRC variables in the CMakeLists.txt files in
the MarmotViz and MarmotVizCAVE directories

The MarmotViz and MarmotVizCAVE filters can now be rebuilt with the new feature-
matching algorithm following the steps from Section 2.

5.3 Developing new illustrative visualization effects
To develop a new illustrative visualization effect, extend the asrIllustrativeEffect

class in the SharedCode directory. The new effect should implement the following functions:

• Constructor – call the parent class constructor and set default values for algorithm
parameters.

• const char * GetName() – This returns the name of the illustrative effect. Note that
the class name should be short to avoid overruns in the ParaView GUI.

• void SetParameters (vector< std::string > &Parameters,
std::string &ChangeFXStatus) – This sets parameters for the illustrative effect
given a vector of input strings, and returns a result string

• void ApplyEffect(UnstructuredGeometryData &Geometry,
vtkDataArray* OutputArray, double Time) – This algorithm receives an input
Geometry object (defined in asrIllustrativeEffect.h), the time value, and the
output data field. It should add any new effect geometry elements to the Geometry object
and modify the output field appropriately.

 12

Once the illustrative visualization effect class has been implemented, it must be incorporated
into the following places in the source code:

1. Add an include statement for the new illustrative visualization effect header file in the tops of
MarmotViz/vtkMarmotViz.cxx and
MarmotVizCAVE/vtkMarmotVizCAVE.cxx files.

2. Add a construction option in the ChangeFX(const char* InCommand) function in
the MarmotViz/vtkMarmotViz.cxx and
MarmotVizCAVE/vtkMarmotVizCAVE.cxx files.

3. Add the new .cxx file name to the OTHER_SRC variables in the CMakeLists.txt files in
the MarmotViz and MarmotVizCAVE directories

The MarmotViz and MarmotVizCAVE filters can now be rebuilt with the new illustrative effect
following the steps from Section 2.

